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Abstract—Detection of nudity in photos and videos, especially 

prior to uploading to the internet, is vital to solving many 

problems related to adolescent sexting, the distribution of child 

pornography, and cyberbullying. The problem with using nudity 

detection algorithms on high fidelity images as a means to combat 

these problems is that: 1) it implies that a digitized nude photo of 

a minor already exists (i.e., child pornography), and 2) there are 

real ethical and legal concerns around the distribution and 

processing of child pornography. Once a camera captures an 

image, that image is no longer secure. Therefore, we need to 

develop new privacy-preserving solutions that prevent the digital 

capture of nude imagery of minors. Our research takes a first 

step in trying to accomplish this goal:  In this paper, we examine 

the feasibility of using a low-powered sensor to detect skin 

dominance (defined as an image comprised of 50% or more of 

human skin tone) in a visual scene. By designing four custom 

light filters to enhance the digital information extracted from 300 

scenes captured with the sensor (without digitizing high-fidelity 

visual features), we were able to accurately detect a skin 

dominant scene with 83.7% accuracy, 83% precision, and 85% 

recall. Our long-term goal is to design a low-powered vision 

sensor that can be mounted on a digital camera lens on a teen’s 

mobile device to detect and/or prevent the capture of nude 

imagery. Thus, we discuss the limitations of this work toward this 

larger goal, as well as future research directions. 

Keywords—filters, skin detection, nudity, low-powered sensor, 

machine learning 

I. INTRODUCTION 

The advent of mobile smart devices, digital image capture, 

and multi-media messaging services has created a 

phenomenon known as “sexting [1],” which now places 

adolescents at risk of long-term repercussions, as such 

ephemeral exploration can now be immortalized forever in the 

digital realm. Prolific sharing combined with the permanence 

of digitally captured nudity is particularly problematic as 

dissemination of child pornography (e.g., naked imagery or 

sex acts involving a minor) is a crime punishable by law [2]. 

Even more concerning, however, is the prolonged effects of a 

momentary mistake, including sexual predation, emotional 

trauma, cyberbullying, and even suicidal behaviors that have 

been documented by prior research [1], [3]. To prevent such 

momentary mistakes, like taking a sexually explicit picture of 

someone (even with their consent) or taking one’s own 

sexually explicit picture through a mobile camera, we must 

devise a scheme that senses these actions beforehand and gives 

teens a chance to rethink their decision. Detecting sexting 

behavior at this level would serve to combat the problem at the 

source, instead of after the damage has been done. 

The goal of this work is to take a small, but necessary, first 

step toward a more cohesive solution to this larger problem. If 

we could detect risky online behaviors (e.g., a teen taking a 

nude photo or streaming video while unclothed) using the 

device teens use to connect to the internet (e.g., mobile 

smartphone, tablet, or laptop), then we would be able to 

mitigate these risks in more meaningful ways. Unfortunately, 

nudity detection in itself poses additional risks to teens, as a 

high-fidelity digitized nude image of a minor would possibly 

be transmitted to a server for additional processing, already 

negating our goal of preserving the privacy of minors. 

Therefore, an integral part of this long-term goal of detecting 

nudity prior to digital capture is a sensor that integrates 

directly with a mobile application to decouple skin detection 

(performed by the sensor) from risk mitigation strategies 

(managed by the application layer) so that parents can 

customize how to handle problematic behavior based on the 

age and unique needs of their teen. 

As part of this work, we designed four light filters and 

paired them with a vision sensor one-by-one to detect skin 

patterns in light spectrum that is incident on the sensor through 

the filters. First step was to learn the skin pattern and for that 

ten participants took 300 observations. From this, a dataset 

associated with real scenes was created, including 150 non-

skin dominant setting (e.g., a landscape or picture of an object) 

and 150 skin-dominant settings (e.g., an almost nude “selfie” 

taken in a bathroom or a close-up of one’s face). We tested 

four machine learning algorithms to determine the accuracy in 

which they could detect skin dominance based on the sensor 

output. Simple Tree offered an accuracy of 83.7%, precision 

value of 0.83 and recall value of 0.85. The long-term goal to 

be achieved in the future is that a low-powered vision sensor is 

part of a teen’s mobile device that operates all the time and 



detects and/or prevents the digital capture of nude imagery 

through a regular camera. 

II. BACKGROUND  

In the following section, we provide an overview of the 

current literature regarding adolescent mobile risks and nudity 

detection approaches.  

A. Risks Associated with Digitized Nudity 

A recent study found that 15% of teens on Snapchat claim 

to have received sexually explicit photos and 4% of cell-

owning teens ages 12-17 say they have sent sexually 

suggestive nude or nearly nude images of themselves to 

someone else via text messaging [4]. Teen sexting behaviors 

are perpetuated by mobile technologies and by several direct 

messaging applications that are available on smartphones like 

Kik, Snapchat, and AskFM [5]. Unfortunately, such activities 

often fall under the jurisdiction of child pornography laws. 

Child pornography is illegal, and the federal law states that “a 

picture of a naked child may constitute illegal child 

pornography if it is sufficiently sexually suggestive. 

Additionally, the age of consent for sexual activity in a given 

state is irrelevant; any depiction of a minor under 18 years of 

age engaging in sexually explicit conduct is illegal” [2].  

B. The Current State of the Art in Nudity Detection 

Over the last decade, computer scientists have tried to 

address these problems indirectly through exploring various 

nudity and skin detection techniques. For instance, Deselaers 

[6] developed a method for detecting adult nudity in videos 

based on a bag-of-visual-features representation for frames; 

Kovac et al. [7] proposed a method for detecting skin color 

based on RGB color space. Other researchers have used image 

databases to train a classifier. Lin et al. [8] used a Support 

VectorMachine (SVM), which has learning skills in the image 

detection of human nudity. Amato [9] created an application, 

which is able to intercept images received through various 

communication channels (e.g., Bluetooth, MMS) on mobile 

devices based on the Symbian™ operating systems. Once 

intercepted, the images are analyzed by the component of the 

system that automatically classifies images with explicit 

sexual content. Commercially, Facebook, Twitter and Bing are 

working closely with organizations, such as the National 

Center for Missing and Exploited Children’s CyberTipLine 

Child Victim Identification Program, to track down illicit 

photos of minors [10]. PhotoDNA [11], which was developed 

by Microsoft, seems to be the most popular and latest 

technological solution for detecting digital nudity by analyzing 

digital imagery and metadata compared to a database of 

known images.  

The approaches taken across academic researcher and 

industry have both had their limitations. The commercial 

solutions primarily focus on preventing the dissemination of 

child pornography (which already exists), and therefore, the 

problem in a post-hoc fashion. We argue that a more effective 

approach is to curtail the problem at the source and take 

suitable mitigation approaches to prevent the creation and 

dissemination of such imagery in the first place. Otherwise, all 

of the computational academic work related to the detection of 

nudity has been done at the software-level only; a myriad of 

algorithms have been designed by the computer science 

community to increase the accuracy and efficiency of 

detecting nudity [12]–[20], but they all operate on the already 

digitized images, that is, digitally-stored instances of nudity. 

There is no published work articulating the need to reduce teen 

sexting behavior at hardware level. Skin detection at the pre-

digitization level ensures privacy and in the future in can be 

combined with detection of other spatial and/or temporal 

features in nude scenes to prevent teen sexting.  

In the following section, we explain in detail the 

implementation of the skin detector. First, we go into the detail 

of hardware including the specific design of filters. Then, we 

explain the setting of the experiment that we performed to test 

the accuracy of the skin detector. In the results sections, we 

present and interpret the results of the experiment. Finally, we 

discuss the implications of this work, provide the limitations 

associated with the implementation, and outline future work 

that needs to be done in order to achieve the long-term goal of 

reducing teen sexting behavior at a more secure level.  

C. Skin Detection as an Integral Part of Nudity Detection 

Detection of nude scenes requires detection of all kind of 

contextual and visual features in an image. In reviewing the 

literature, one of the important features for nudity detection is 

skin [21], [22]. Islam et al. in [23] states: 

 

“Nudity and pornography have a direct link with human 

skin. In fact, no pornography can exist without exposure 

of human skin… A wide range of image processing 

applications exist, where skin detection is playing a 

crucial role. Using colour as a detection cue has long 

being recognized as a robust feature and has become a 

popular choice in human skin detection techniques.” 

 

With this in mind, our work draws from Angelopoulou et al. 

[24], which showed that skin reflectance exhibits a “W” 

pattern in wavelength domain. Therefore, we design light 

filters to detect this pattern through the low-powered vision 

sensor to improve skin detection on low fidelity imagery. 

III. HARDWARE CONFIGURATION AND COMPONENTS 

This section describes the physical hardware components 

and configuration of our prototype. Since the basic vision 

sensors (e.g., FireFly Vision Sensor) cannot be connected to a 

cell phone without dismantling the mobile device and 

modifying its hardware. Therefore, for the sake of this proof-

of-concept experiment, we used a separate processing chip i.e., 

Arduino, for testing purposes (connecting a processing chip to 

the vision sensor/chip to collect data and perform evaluation 

for the proposed solution). These sensors, in theory, can be 

connected to existing mobile processors once our proof-of-

concept has matured into a viable solution for the problem. 

A. Hardware Components 

Processor: We used Arduino/Genuino Board using the 

open-sourceArduino Software (IDE) which makes it easy to 



write code and upload it to the board. The environment is 

written in Java and based on Processing and other open-source 

software. 

 

Vision Chip (sensor): We used the FireFlyBig [25]. The 

Firefly series of vision chips are a series of flexible resolution 

vision chips designed for a broad set of visual sensing 

applications. Two chips are available in this series, the 

FireflyBig having a resolution of 480x256 pixels, and the 

FireflySmall with a resolution of 128x256 pixels. We used the 

former one. 

B. Hardware Configuration 

The sensor is connected to a processor to send and receive 

signals. For our purposes, we did not need the 8-bit port. The 

analog output of the FireFly chip is providing us with pixel 

values of the pixel array, serially. Figure 1 shows an actual 

setup of our hardware prototype. 

 

 

Process for configuring the hardware: 

 

 Connect the Arduino Board to the sensor and make sure 
that all the power and signal ports are connected 
correctly. 

 Write a testing code (Blink program) on Arduino IDE, 
save it to the Arduino Board and run the code to see if 
everything is working properly. If the output LED on 
the Arduino blinks, that means that the Arduino is 
working properly. 

 Run the code to get value from the sensor. Sensor can 
be tested by covering the pixel array with palm and then 
taking it away and see if the value that you get are 
considerably different. Use filters from SwatchBook to 
put between the sensor and the subject. Check to see if 
the value received changes with different filters. 

  

These steps ensured that everything was connected and 

working properly prior to running the experiment.  

IV. DESIGNING CUSTOMIZED LIGHT FILTERS 

Before running the experiment, we needed to understand 

what data is received from the sensor and how filters work on 

the sensor to provide the useful data that we need. We 

designed some specific filters to meet these requirements, 

using basic and commercially available filters. 

A. Sensors, Sensor Data, and Light Filters 

In the hardware configuration, we intentionally used a 

sensor with no lens. Therefore, the data was totally defocused. 

The sensor could act like a regular camera if a lens had been 

used to focus the light coming from the scene/object onto the 

pixel array. However, our goal was to defocus the image in 

order to maintain privacy. Defocusing the image means less 

feature detection (i.e., low fidelity imagery), which is a key 

trade-off (between preserving privacy and accurate nudity 

detection) explicitly made by this research design. This also 

meant that we could only detect skin, not actual nudity, using 

the sensor without a lens, which is further discussed in the 

limitations of this research. An ideal case for detecting nudity 

with privacy would be when the data that is captured on the 

pixel array is defocused enough not to be converted back to a 

recognizable nude image and at the same time has enough 

distinct features to detect nudity. The pixel array from the 

sensor provides almost the same value on every pixel for a 

single capture, which is then averaged to record one value per 

capture. The value comes out to be a real number greater than 

zero (represents light intensity in general). In order to allow 

different features to be present in the data (more than a single 

value), we took four different captures of the same 

object/scene with four different light-filters each. We designed 

these four filters. 

B. Filter Design 

The selection of the four filters (Filters A, B, C, and D) 

that we designed can be justified by Angelopoulou et al. [24]. 

According to the paper, the reflectances of various tones of 

human skin in the visible range of electromagnetic spectrum 

form a certain pattern. All the measured reflectances, except 

for the more dark-skinned (black) people, exhibit a localized 

"W” pattern (two dips with a bump in the middle). It shows the 

pattern of reflectances of various tones of human skin for 

wavelengths of visible light. The main goal of designing filters 

is to detect the approximate position of the two peculiar dips 

and a hump shown in the “W” pattern. 

Ideally, the filters that we select should act as band pass 

filters allowing four roughly-distinct range of wavelengths to 

pass through to the sensor. Filter A should transmit all the 

wavelengths from 500 to 550nm. Filter B should be designed 

to transmit only the wavelengths from 550 to 565nm. Filter C 

should pass wavelengths ranging from 565nm to 580nm and 

Filter D should allow all the wavelengths above 580 to pass 

through. The ideal filter will pass the required range of 

wavelength with 100 percent transmission rate and stop the 

rest of the wavelengths completely. We combined multiple 

filters to come up with the designs that resemble the above-

shown filters. Simple optics and mathematics show that 

multiplication of spectral energy distributions (SEDs) of 

Figure 1. Setup of the Hardware Prototype 

 
 



overlapping filters give the resultant SED of the combination 

of the filters. To illustrate this with an example, we discuss 

how the SED curve of some commonly available filters can be 

used to design a required filter. Deep Straw (Roscolux #15) 

and Leaf Green (Roscolux #386) filters were combined to 

make Filter B. 

Similarly, for Filter ‘A’ we used Hemsley Blue and Moss 

Green, for Filter ‘C’ we used Apricot and Leaf Green, and for 

Filter ‘D’ we just used single filter i.e., Deep Amber. These 

four filters differ from the ideal filters in bandwidth and 

percentage of transmission. They have low transmission and 

loose bandwidth partially allowing some of the undesirable 

wavelengths. They can be improved given more variety of 

filters available in market. 

V. STUDY DESIGN 

A. Data Collection 

 We used the FireFly Vision chip [25] to capture 300 real 
scenes. Half of the scenes were category “1” which means that 
they were skin dominant while the other category (i.e., “0”) 
contained regular scenes from indoors and outdoors. Skin 
dominant scenes were defined to be the ones where more than 
50% of the scene in front of the sensor had skin. Since there 
was no lens, every pixel on the lens got the same value (light 
coming from everywhere) and hence that value was recorded. 
Each scene was captured four times with 4 different filters that 
we mentioned in the previous section. The set of these four 
values is actually one scene or one observation. The field of 
view of the sensor was restricted by covering the periphery of 
the pixel array with a hollow dull-black cylinder of radius 5 mm 
and a height of 20 mm. For training and testing purposes, the 
filters were switched manually. 

Ten individuals, including the first author, volunteered to 
help create the data set. They used the vision sensor to capture 
30 real scenes each (15 usual and 15 skin-dominant). Each 
scene was captured 4 times with the 4 different filters. 
Therefore, we created a total of 300 observations (10 people x 
30 scenes = 300). Fifteen of the 30 scenes were taken with high 
skin content, exposing skin in their bedrooms and washrooms 
with subjective lighting (mostly fluorescent and incandescent, 
monochromatic lights were not used) and background. They 
usually took their selfies depicting typical ‘nude selfies’ taken 
by teens indoors. The participants were asked to take 15 skin 
dominant captures first and then 15 non-skin dominant 
captures. They subjectively chose 15 different scenes of more 
than 50% skin, recorded the readings with four filters and kept 
them aside. Then they chose different scenes of less than 50% 
skin and recorded the readings with four filters. Distance of 
sensor from the image subject does not matter but only the 
fraction of skin reflectance area in the field of view of the 
sensor. Participants were chosen based on their skin tones. 
They varied from brown, through beige, to white. We did not 
include  very dark-skinned people (black), since the “W” 
pattern for the reflectance of spectrum mentioned by 

Model Accuracy Precision Recall Prediction 

Speed 

Training 

Time 

Model Parameters 

Simple Tree 83.7% 0.83 0.85 ~17000 
obs/sec 

0.96223 
sec 

Preset: Simple tree Maximum number 
if splits: 4 

Split criterion: Gini’s diversity index 

Cross Validation: 6-folds 

Logistic 

Regression 

77.3% 0.77 0.77 ~6200 
obs/sec 

13.459 
sec 

Preset: Logistic Regression Cross 
Validation: 6-folds 

Linear SVM 

Model 

74.7% 0.77 0.71 ~6600 

obs/sec 

3.36 sec Preset: Linear SVM Kernel 

function: Linear Cross Validation: 
6-folds 

Multiclass method: One vs One 

Quadratic SVM 

Model 

94.3% 0.94 0.95 ~19000 

obs/sec 

1.1068 

sec 

Preset: Quadratic SVM Kernel 

function: Quadratic Cross Validation: 
6-folds 

Multiclass method: One vs One 

 
Table 1: Model Results 

 

Figure 2. Ideal Light Filters Needed for the Experiment 



Angelopoulou et al. [24] does not exist for them. 

B. Analysis and Classification 

The four values that we get using the filters make our 

feature vectors, while the response variable is categorical (0 or 

1). A total of 300 observations were split into test and training 

set, and were used to test the accuracy of four different 

classification algorithm. These algorithms (Simple Tree, 

Logistic Regression, Linear SVM and Quadratic SVM) are 

common for supervised learning tasks, and are chosen 

considering the type of data. The data that we have is 

simplified since filters at the hardware level already took care 

of much of the complexity of the task. The data is only 4 real-

valued feature vectors that needs to undergo binary 

classification. we chose the above-mentioned algorithms based 

on Alex Smola et al. [21]. Since, we are detecting skin through 

only four filters, low accuracy is already expected and 

therefore achieving a classification accuracy of 80% should be 

considered a success. Skin detectors proposed in [23], [26]–

[32] got accuracy around 70% to 90%. 

To perform the analysis, we used Statistics and Machine 

Learning Toolbox of MATLAB. The Classification Learner 

app is included in the toolbox that allows various training 

models to classify data using supervised machine learning. 

The toolbox also let us run these selected models in parallel 

and display the result in different tabs to compare. We tested 

four models based on the algorithms selected above and train 

the models with 250 observations (125 being skin-dominant). 

Then we tested the models on 50 observations (25 being skin- 

dominant) to record the accuracy, precision and recall of the 

models. Next, we provide results from the four models. 

VI. RESULTS 

The results of the four models are shown in Table 1 with 

figures that illustrate these of these models shown in Figures 

3-6. To do the analysis, we made use of Statistics and Machine 

Learning Toolbox of MATLAB. The Toolbox has an app, 

Classification Learner, that offers numerous training models to 

classify data using supervised machine learning. Considering 

the simplicity of the data, we applied the following four 

classification models from the options: Simple Tree, Logistic 

Regression, Linear SVM and Quadratic SVM. We applied 6-

fold cross validation to all model. The app takes care of the 

parameters itself. They are autotuned with optimal 

regularization constants and hence the app outputs the best 

accuracy possible for each model. We did not perform any 

analyses on individual skin tones as the numbers of sub-

samples are too less to determine individual accuracies for 

different skin tones. 

The four plots shown in Figures 3-6 exhaust all cases of 

true positives, true negatives, false positives and false 

negatives for each model. The accuracy of the last model is 

94.3% and hence we can see in the plot that it has very less 

‘dotted lines’ (incorrect cases). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Parallel Coordinates Plot using Simple Tree 

Figure 4. Parallel Coordinates Plot using Logistic Regression 

Figure 5. Parallel Coordinates Plot using Linear SVM 

Figure 6. Parallel Coordinates Plot using Quadratic SVM 



A. Evaluation Summary 

By using the four filters we aimed to detect the dip and 
humps of the “W” pattern mentioned earlier. According to the 
wavelength ranges of the filters (see Fig. 2), if light is reflected 
from skin, Filter B should record a relatively higher (but not 
too much high) value than Filter A, Filter C should record a 
relatively low (but not too low) value than Filter B and Filter D 
should record a relatively high value than Filter C (see Figure 
2). If we observe the Parallel Coordinates plots for the models 
we used, we can clearly see that the correct category ‘1’ lines 
are the ones that exhibit the above described nature. By 
comparing the accuracy, precision, and recall values for the 
models (see Table 1) we see that Logistic Regression and 
Linear SVM models exhibited lower accuracy as compared to 
the other two models, and their prediction speeds are also poor. 
However, Simple Tree model offered an accuracy of 83.7% and 
a prediction speed of 17000 observations per second, and 
Quadratic SVM had an accuracy of 94.3% and a prediction rate 
of 19000 observations per second. The last model seems to be 
the best since its accuracy and prediction speed is ahead of 
others. However, quadratic fitting for such a small training set 
clearly overfits data, therefore, the best option is the Simple 
Tree model. 

VII. DISCUSSION  

The main contributions of this work are both on theoretical 

and practical sides. First, the use of a vision sensor for skin 

detection is innovative since it deals with the detection at 

hardware level and the fact that it is a low-powered sensor 

makes it more interesting since it can add an active layer of 

privacy over the regular mobile camera. Secondly, the 

accuracy of the skin detection will encourage combined 

approaches to extract and detect more features from nude 

imagery in the future. A large database should be generated to 

ensure good accuracy and to allow evaluation for individual 

skin tones too, so that we can assess which skin tones are 

detected more accurately than others. If we were working with 

digitized images, the pixel resolution would have made a 

difference according to sampling theory, for example, a lower 

resolution could have caused the “W” pattern of skin 

reflectance to lose some of its peculiarity. However, the 

advantage of this research is that we are working in with a 

continuous domain and hence the filters act like analog 

samples of the reflected spectrum.  

If the number of filters is increased, the design for each 

filter is improved. More accuracy can be achieved and dark 

skin can also be detected since the improved filter might detect 

some hidden patterns for darker skin (may be in logarithmic 

scale of wavelength). The false positive cases are less because 

the “W” pattern for skin is very different from any other skin-

like colored-object and the model trained is based on the four 

filters which are based on the “W” pattern. However, this does 

not guarantee that teens cannot find ways to get around it. The 

skin detector may not perform at all under unique cases like 

nude picture in red light or underwater nude selfie, because the 

database is small. 

A. Limitations 

The accuracy of this solution needs to be improved before 

it can be implemented commercially. Number of filters can be 

increased to capture minute details in human skin reflectance 

pattern. Instead of using totally defocused image with one 

value per filter, a lens can be used to focus different light 

intensities onto different cells of pixel array. This means we 

have more information about the scene that is captured by the 

camera and hence more features could be extracted. To be 

clear, the prototype implemented does not differentiate 

between a nude scene and a skin dominant non-nude scene. 

The work was constrained due to minimal hardware (i.e., 

vision sensor chip without a lens). This means that the pixel 

array gets the same value and hence the image is fully-

defocused. Although the composition of colors reaching the 

sensor can be extracted by using light filters (already 

implemented), shape or location specific features can still not 

be extracted without a lens.  

The module can detect skin dominant scenes which is an 

achievement towards the goal of detecting nudity considering 

skin is one of the most important features in the detection of 

nudity, as also highlighted by Rigan Ap-apid [21]. To detect 

nudity, we need to use a lens in a way to make the capture 

partially- defocused but at the same time we need to maintain 

privacy. An ideal compromise between maintaining privacy 

and detecting skin with high accuracy would happen when the 

data that is captured on the pixel array is defocused enough not 

to be converted back to a recognizable nude image and at the 

same time has enough distinct features to detect nudity or high 

skin content. 

The biggest constraint to achieving a high accuracy of 

detection is the lack of already available datasets that can be 

used to sharpen our classifier model. It is difficult to capture 

‘real’ nude scenes through the sensor to form a big database. 

One way could be to run a slideshow of nude images on a 

monitor screen and place the vision sensor in front of the 

screen to capture all the samples found in existing nudity 

related databases on the internet. However, this scheme does 

not work. The intrinsic glare of the monitor screen barges into 

data being sensed by the sensor and hence the classifier that 

will be learned on that data will not work for real nude scenes.  

Another constraint is related to the mechanics of the 

sensor. Since we have introduced four light filters to extract 

low level features and build a classifier, we must have four 

values as inputs to the classifier every time we attempt to 

detect nudity. This means that four different filters must be 

used to capture the same scene at a given time. Switching 

between the filters mechanically in front of the sensor is not 

feasible and requires time, space, and mechanical power. One 

solution could be to use four separate sensors with different 

filters. This saves time though it still consumes space and 

electrical power. Another solution that is more feasible, in our 

case (fully-defocused capture i.e., one numeric value per 

filter), is to partition the pixel array on the sensor into 4 

quadrants and read four values at a time. This saves time, 

space, and power though it will only work for very defocused 

or fully-defocused captures.  



Finally, we are not providing a hardware-ready solution. 

Instead, we are presenting a proof-of-concept as an 

implementable idea that mobile companies can take into 

account while designing their products.  

B. Future Research 

Future research will need to test this approach on mobile 

devices. Using mobile processors, the information of detection 

(either binary information i.e., detected or not detected, or 

multiple levels of detection) could be sent through the 

background service that is operating the sensor to an 

application in the mobile that controls the regular camera of 

the device. If the accuracy of feature detection in the 

defocused images increases, nudity can also be detected while 

preserving the privacy, and the information can be sent to an 

application inside that mobile device which can then control 

the camera according to different mitigation levels.  

In essence, this application will receive the information of 

detection of nudity and take appropriate actions according to 

the criteria preset by the guardians/parents of the user of that 

mobile device. The application might offer multiple types of 

mitigation approaches, including: 1) On a very basic level, it 

might record the number of times the user (teen) has tried to 

take a nude picture, 2) The app could shut off the device’s 

camera for 60 seconds, and 3) The app may warn the user up 

to a certain number of instances of attempts and then goes on 

to blocking the camera. Depending on the balance between 

parental control and teen self-regulation appropriate for a 

given parent-child relationship [33]–[35], these parameters 

may be shifted to adjust to the needs of the users. Such 

approaches might take us one step closer to solutions that help 

teens make better online choices. Some reasons why we 

believe our approach presents a feasible solution moving 

forward include: 

 

 This solution caters for the age factor in a way that it 
presumes that the mobile application will be installed on 
a mobile device that belongs to an underage user. 
Therefore, the skin detection algorithms do not need to 
differentiate between adults versus minors. 

 The processing power, time and space for the skin 
detection process through this sensor can easily be 
handled by a mobile processor. Although, processing 
low-level features is a compromise on accuracy of 
classification, detection of nudity eventually in real time 
on a portable device like a cell phone is the central goal 
and so this compromise is necessary. 

 The sensor used is a low powered sensor with a set of 4 
filters that can operate 24/7 and captures low level 
features that are easy to process in real time. This makes 
it compatible with real-time applications like Skype, 
Facetime etc. Also, such a sensor offers privacy, since 
these captures by the vision sensors are defocused and 
are unrecognizable to any human. This means that 
nudity can be detected before digital capture (via regular 
camera) of the scene. 

  

Although the current prototype detects only skin, the use of 

lens with a low-powered sensor in a mobile device may be 

able to address the problem of detecting nudity in the future. 

Detecting nudity at this level will give more control, for 

instance, over capturing of an image through the regular 

mobile camera. Furthermore, the presence of a mobile 

application or background service to manage risk mitigation 

strategies once nudity is caught will make the solution even 

more comprehensive and manageable.  

However, the sensor would need to be integrated with the 

camera lens by phone manufacturers or done after-market in a 

way that ensures that it cannot easily be removed from the 

mobile device by teens trying to circumvent its functionality. 

Thus, to move forward with a consumer-ready product, 

multiple stakeholders (e.g., phone manufacturers, operating 

system providers, designers, engineers, and researchers) need 

to work together to develop an end-to-end solution that both 

detects risky sexting behaviors and works to mitigate these 

behaviors before they endanger the safety of our youth. The 

merging of the fields of Computer Engineering, Psychology, 

and Human-Computer Interaction will enable us to create and 

evaluate a novel solution to the problem of adolescent sexting 

behaviors. By de-coupling risk detection (i.e., sensor) from 

risk mitigation strategies employed (i.e., application), we can 

move toward building an integrated solution that is both 

technically feasible and that practically addresses the human 

context of the problem at hand [36]. Finally, conducting user 

studies prior to developing our solution and assessing the 

viability of our solution after it has been built will ensure that 

our work translates into broader societal impact. 

VIII. CONCLUSION 

We developed a skin detector module that uses a vision 
sensor and 4 filters to detect a skin dominant scene. As soon as 
the electromagnetic spectrum falls onto the sensor, the detector 
tells whether the reflectance pattern was skin dominant or not 
with an accuracy of 83%. Its novelty is in the fact that this 
detector does not operate on an already digitized image but 
detects skin at the hardware level. This ensures privacy. Our 
main contribution is in designing the light filters for sensor to 
increase the accuracy of skin detection. The long-term goal to 
be achieved in the future is to design a low-powered vision 
sensor that can be mounted on a digital camera lens on a teen’s 
(or any minor under the age of eighteen) mobile device to 
detect and/or prevent the capture of nude imagery.  
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